Список литературы

Clinical recommendations type 1 diabetes mellitus in adults of the Ministry of Health of the Russian Federation

[1] Дедов И.И., Шестакова М.В. Сахарный диабет типа 1: реалии и перспективы. МИА, 2016
[2] Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res. 2001; 5669 — 89.
[3] Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med. 2012; 2(11): a007641. doi: 10.1101/cshperspect.a007641
[4] Antvorskov JC, Josefsen K, Engkilde K, et al. Dietary gluten and the development of type 1 diabetes. Diabetologia. 2014; 57(9): 1770 — 1780. doi: 10.1007/s00125-014-3265-1
[5] Kawasaki E. Type 1 diabetes and autoimmunity. Clin Pediatr Endocrinol. 2014; 23(4): 99 — 105. doi: 10.1297/cpe.23.99
[6] Lampasona V, Liberati D. Islet Autoantibodies. Curr Diab Rep. 2016; 16(6): 53. doi: 10.1007/s11892-016-0738-2
[7] International Diabetes Federation. IDF Diabetes Atlas. 10th ed. 2021
[8] Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. — 10-й выпуск. Сахарный диабет. 2021; 24(S1). doi: 10.14341/DM12802
[9] World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Report of a WHO/IDF consultation. Geneva, 2006
[10] World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva, 1999
[11] World Health Organization. Classification of diabetes mellitus. World Health Organization. 2019
[12] Hansen MP. Type 1 diabetes and polyglandular autoimmune syndrome: A review. World J Diabetes. 2015; 6(1): 67. doi: 10.4239/wjd.v6.i1.67
[13] American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S17 — S38. doi: 10.2337/dc22-S002
[14] International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes. Diabetes Care. 2009; 32(7): 1327 — 1334. doi: 10.2337/dc09-9033
[15] World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva, 2011
[16] Umpierrez G, Korytkowski M. Diabetic emergencies — ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat Rev Endocrinol. 2016; 12(4): 222 — 232. doi: 10.1038/nrendo.2016.15
[17] American Diabetes Association. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S46 — S59. doi: 10.2337/dc22-S004
[18] de Boer IH, DCCT/EDIC Research Group. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014; 37(1): 24 — 30. doi: 10.2337/dc13-2113
[19] Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003; 139(2): 137 — 147. doi: 10.7326/0003-4819-139-2-200307150-00013
[20] James MT, Grams ME, Woodward M, et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am J Kidney Dis. 2015; 66(4): 602 — 612. doi: 10.1053/j.ajkd.2015.02.338
[21] Gonzalez-Lao E, Corte Z, Simon M, et al. Systematic review of the biological variation data for diabetes related analytes. Clin Chim Acta. 2019; 48861 — 67. doi: 10.1016/j.cca.2018.10.031
[22] Leighton E, Sainsbury CA, Jones GC. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther. 2017; 8(3): 475 — 487. doi: 10.1007/s13300-017-0265-4
[23] Силко Ю.В., Никонова Т.В., Иванова О.Н., и др. Латентный аутоиммунный диабет взрослых: информативность аутоантител. Терапевтический архив (архив до 2018 г.). 2016; 88(10): 42 — 45. doi: 10.17116/terarkh2016881042-45
[24] Sosenko JM, Skyler JS, Palmer JP, et al. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care. 2013; 36(9): 2615 — 2620. doi: 10.2337/dc13-0425
[25] Shields BM, Hicks S, Shepherd MH, et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010; 53(12): 2504 — 2508. doi: 10.1007/s00125-010-1799-4
[26] Shepherd M, Sparkes AC, Hattersley AT. Genetic testing in maturity onset diabetes of the young (MODY): a new challenge for the diabetic clinic. Pract Diabetes Int. 2001; 18(1): 16 — 21. doi: 10.1002/pdi.108
[27] Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ. 2011; 343d6044. doi: 10.1136/bmj.d6044
[28] Shun CB, Donaghue KC, Phelan H, et al. Thyroid autoimmunity in Type 1 diabetes: systematic review and meta-analysis. Diabet Med. 2014; 31(2): 126 — 135. doi: 10.1111/dme.12318
[29] Jonsdottir B, Larsson C, Carlsson A, et al. Thyroid and Islet Autoantibodies Predict Autoimmune Thyroid Disease at Type 1 Diabetes Diagnosis. J Clin Endocrinol Metab. 2017; 102(4): 1277 — 1285. doi: 10.1210/jc.2016-2335
[30] Warncke K, Frohlich-Reiterer EE, Thon A, et al. Polyendocrinopathy in Children, Adolescents, and Young Adults With Type 1 Diabetes: A multicenter analysis of 28,671 patients from the German/Austrian DPV-Wiss database. Diabetes Care. 2010; 33(9): 2010 — 2012. doi: 10.2337/dc10-0404
[31] Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol (Chicago, Ill 1960). 1984; 102(4): 527 — 532.
[32] Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol (Chicago, Ill 1960). 1984; 102(4): 520 — 526.
[33] DCCT/EDIC Research Group, Nathan DM, Bebu I, et al. Frequency of Evidence-Based Screening for Retinopathy in Type 1 Diabetes. N Engl J Med. 2017; 376(16): 1507 — 1516. doi: 10.1056/NEJMoa1612836
[34] American Diabetes Association. Standards of Medical Care in Diabetes-2022 Abridged for Primary Care Providers. Clin Diabetes. 2022; 40(1): 10 — 38. doi: 10.2337/cd22-as01
[35] Misra A, Bachmann MO, Greenwood RH, et al. Trends in yield and effects of screening intervals during 17 years of a large UK community-based diabetic retinopathy screening programme. Diabet Med. 2009; 26(10): 1040 — 1047. doi: 10.1111/j.1464-5491.2009.02820.x
[36] Mohamed Q, Gillies MC, Wong TY. Management of Diabetic Retinopathy: a systematic review. JAMA. 2007; 298(8): 902 — 916. doi: 10.1001/jama.298.8.902
[37] International Council of Ophthalmology. ICO Guidelines for Diabetic Eye Care. San Francisco, http://www.icoph.org/downloads/ICOGuidelinesforDiabeticEyeCare.pdf (2017)
[38] Solomon SD, Chew E, Duh EJ, et al. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017; 40(3): 412 — 418. doi: 10.2337/dc16-2641
[39] Canadian Ophthalmological Society Diabetic Retinopathy Clinical Practice Guideline Expert Committee, Hooper P, Boucher MC, et al. Canadian Ophthalmological Society Evidence-based Clinical Practice Guidelines for the Management of Diabetic Retinopathy — executive summary. Can J Ophthalmol. 2012; 47(2): 91 — 101. doi: 10.1016/j.jcjo.2012.01.022
[40] Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977 — 986. doi: 10.1056/NEJM199309303291401
[41] Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, et al. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000; 342(6): 381 — 389. doi: 10.1056/NEJM200002103420603
[42] American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S83 — S96. doi: 10.2337/dc22-S006
[43] Общероссийская общественная организация «Российская ассоциация геронтологов и гериатров». Клинические рекомендации «Старческая астения». 2020
[44] Ткачева О.Н., Рунихина Н.К., Остапенко В.С., и др. Валидация опросника для скрининга синдрома старческой астении в амбулаторной практике. Успехи геронтологии. 2017; 30(2): 236 — 242.
[45] Nathan DM, Kuenen J, Borg R, et al. Translating the A1C Assay Into Estimated Average Glucose Values. Diabetes Care. 2008; 31(8): 1473-1478. doi: 10.2337/dc08-0545
[46] Battelino T, Danne T, Bergenstal RM, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019; 42(8): 1593 — 1603. doi: 10.2337/dci19-0028
[47] Beck RW, Bergenstal RM, Riddlesworth TD, et al. Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care. 2019; 42(3): 400-405. doi: 10.2337/dc18-1444
[48] Kristensen K, Ogge LE, Sengpiel V, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes: an observational cohort study of 186 pregnancies. Diabetologia. 2019; 62(7): 1143 — 1153. doi: 10.1007/s00125-019-4850-0
[49] Beck RW, Bergenstal RM, Cheng P, et al. The Relationships Between Time in Range, Hyperglycemia Metrics, and HbA1c. J Diabetes Sci Technol. 2019; 13(4): 614 — 626. doi: 10.1177/1932296818822496
[50] Vigersky RA, McMahon C. The Relationship of Hemoglobin A1C to Time-in-Range in Patients with Diabetes. Diabetes Technol Ther. 2019; 21(2): 81 — 85. doi: 10.1089/dia.2018.0310
[51] Davis MR, Mellman M, Shamoon H. Further Defects in Counterregulatory Responses Induced by Recurrent Hypoglycemia in IDDM. Diabetes. 1992; 41(10): 1335 — 1340. doi: 10.2337/diab.41.10.1335
[52] Henriksen MM, Andersen HU, Thorsteinsson B, et al. Hypoglycemic Exposure and Risk of Asymptomatic Hypoglycemia in Type 1 Diabetes Assessed by Continuous Glucose Monitoring. J Clin Endocrinol Metab. 2018; 103(6): 2329 — 2335. doi: 10.1210/jc.2018-00142
[53] American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S1 — S2. doi: 10.2337/dc22-Sint
[54] Weinstock RS, DuBose SN, Bergenstal RM, et al. Risk Factors Associated With Severe Hypoglycemia in Older Adults With Type 1 Diabetes. Diabetes Care. 2016; 39(4): 603 — 610. doi: 10.2337/dc15-1426
[55] Giorda CB, Ozzello A, Gentile S, et al. Incidence and risk factors for severe and symptomatic hypoglycemia in type 1 diabetes. Results of the HYPOS-1 study. Acta Diabetol. 2015; 52(5): 845 — 853. doi: 10.1007/s00592-015-0713-4
[56] Feig DS, Donovan LE, Corcoy R, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet. 2017; 390(10110): 2347 — 2359. doi: 10.1016/S0140-6736(17) 32400-5
[57] Fisher M. Statins for people with type 1 diabetes: when should treatment start? Pract Diabetes. 2016; 33(1): 10 — 11. doi: 10.1002/pdi.1990
[58] Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008; 371(9607): 117 — 125. doi: 10.1016/S0140-6736(08)60104-X
[59] Rabar S, Harker M, O’Flynn N, et al. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. BMJ. 2014; 349(12): g4356. doi: 10.1136/bmj.g4356
[60] Livingstone SJ, Looker HC, Hothersall EJ, et al. Risk of Cardiovascular Disease and Total Mortality in Adults with Type 1 Diabetes: Scottish Registry Linkage Study. PLoS Med. 2012; 9(10): e1001321. doi: 10.1371/journal.pmed.1001321
[61] Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002; 360(9326): 7 — 22. doi: 10.1016/S0140-6736(02) 09327-3
[62] Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1): 111 — 188. doi: 10.1093/eurheartj/ehz455
[63] Hansen TW, Kikuya M, Thijs L, et al. Diagnostic thresholds for ambulatory blood pressure moving lower: a review based on a meta-analysis-clinical implications. J Clin Hypertens (Greenwich). 2008; 10(5): 377 — 381.
[64] Arguedas JA, Leiva V, Wright JM. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane database Syst Rev. 2013(10): CD008277. doi: 10.1002/14651858.CD008277.pub2
[65] Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension. J Hypertens. 2017; 35(5): 922 — 944. doi: 10.1097/HJH.0000000000001276
[66] Bulugahapitiya U, Siyambalapitiya S, Sithole J, et al. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med. 2009; 26(2): 142 — 148. doi: 10.1111/j.1464-5491.2008.02640.x
[67] Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. Epub ahead of print 31 August 2019. DOI: 10.1093/eurheartj/ehz486
[68] Brunstrom M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ. 2016; 352i717. doi: 10.1136/bmj.i717
[69] Rawshani A, Rawshani A, Franzen S, et al. Range of Risk Factor Levels: Control, Mortality, and Cardiovascular Outcomes in Type 1 Diabetes Mellitus. Circulation. 2017; 135(16): 1522 — 1531. doi: 10.1161/CIRCULATIONAHA.116.025961
[70] Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016; 387(10017): 435 — 443. doi: 10.1016/S0140-6736(15) 00805-3
[71] ГОСТ Р ИСО 15197-2015 Тест-системы для диагностики in vitro. Требования к системам мониторинга глюкозы в крови для самоконтроля при лечении сахарного диабета. Москва: Стандартинформ, 2015
[72] Karter AJ, Ackerson LM, Darbinian JA, et al. Self-monitoring of blood glucose levels and glycemic control: the Northern California Kaiser Permanente Diabetes registry*. Am J Med. 2001; 111(1): 1 — 9. doi: 10.1016/S0002-9343(01) 00742-2
[73] Karter AJ, Parker MM, Moffet HH, et al. Longitudinal Study of New and Prevalent Use of Self-Monitoring of Blood Glucose. Diabetes Care. 2006; 29(8): 1757 — 1763. doi: 10.2337/dc06-2073
[74] Parkin CG, Davidson JA. Value of Self-Monitoring Blood Glucose Pattern Analysis in Improving Diabetes Outcomes. J Diabetes Sci Technol. 2009; 3(3): 500 — 508. doi: 10.1177/193229680900300314
[75] Sheppard P, Bending J, Huber J. Pre- and post-prandial capillary glucose self-monitoring achieves better glycaemic control than pre-prandial only monitoring. Pract Diabetes Int. 2005; 22(1): 15 — 22. doi: 10.1002/pdi.733
[76] Vervoort G, Goldschmidt HMG, van Doorn LG. Nocturnal Blood Glucose Profiles in Patients with Type 1 Diabetes Mellitus on Multiple (>= 4) Daily Insulin Injection Regimens. Diabet Med. 1996; 13(9): 794 — 799. doi: 10.1002/(SICI) 1096-9136(199609) 13: 9 < 794:: AID-DIA185 > 3.0.CO; 2-G
[77] Louie RF, Lau MJ, Lee JH, et al. Multicenter Study of the Prevalence of Blood Contamination on Point-of-Care Glucose Meters and Recommendations for Controlling Contamination. Point Care J Near-Patient Test Technol. 2005; 4(4): 158 — 163. doi: 10.1097/01.poc.0000189933.35225.77
[78] Lewandrowski K. Point-of-care testing: an overview and a look to the future (circa 2009, United States). Clin Lab Med. 2009; 29(3): 421 — 432. doi: 10.1016/j.cll.2009.06.015
[79] Klonoff DC, Perz JF. Assisted Monitoring of Blood Glucose: Special Safety Needs for a New Paradigm in Testing Glucose. J Diabetes Sci Technol. 2010; 4(5): 1027 — 1031. doi: 10.1177/193229681000400501
[80] World Health Organization. WHO injection safety. Fact sheet No. 231. Revised May 2016. Geneva, 2016
[81] Thompson ND, Perz JF. Eliminating the blood: ongoing outbreaks of hepatitis B virus infection and the need for innovative glucose monitoring technologies. J Diabetes Sci Technol. 2009; 3(2): 283 — 288. doi: 10.1177/193229680900300208
[82] Jovanovic L, Savas H, Mehta M, et al. Frequent Monitoring of A1C During Pregnancy as a Treatment Tool to Guide Therapy. Diabetes Care. 2011; 34(1): 53 — 54. doi: 10.2337/dc10-1455
[83] Gorst C, Kwok CS, Aslam S, et al. Long-term Glycemic Variability and Risk of Adverse Outcomes: A Systematic Review and Meta-analysis. Diabetes Care. 2015; 38(12): 2354 — 2369. doi: 10.2337/dc15-1188
[84] Ajjan RA, Cummings MH, Jennings P, et al. Optimising use of rate-of-change trend arrows for insulin dosing decisions using the FreeStyle Libre flash glucose monitoring system. Diabetes Vasc Dis Res. 2019; 16(1): 3 — 12. doi: 10.1177/1479164118795252
[85] Bolinder J, Antuna R, Geelhoed-Duijvestijn P, et al. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet. 2016; 388(10057): 2254 — 2263. doi: 10.1016/S0140-6736(16) 31535-5
[86] Lind M, Polonsky W, Hirsch IB, et al. Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections. JAMA. 2017; 317(4): 379 — 387. doi: 10.1001/jama.2016.19976
[87] Danne T, Nimri R, Battelino T, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017; 40(12): 1631 — 1640. doi: 10.2337/dc17-1600
[88] Haskova A, Radovnicka L, Petruzelkova L, et al. Real-time CGM Is Superior to Flash Glucose Monitoring for Glucose Control in Type 1 Diabetes: The CORRIDA Randomized Controlled Trial. Diabetes Care. 2020; 43(11): 2744 — 2750. doi: 10.2337/dc20-0112
[89] Lodwig V, Heinemann L. Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria. Diabetes Technol Ther. 2003; 5(4): 572 — 586. doi: 10.1089/152091503322250596
[90] Дедов И.И., Шестакова М.В., Петеркова В.А., и др. Проект рекомендаций Российской ассоциации эндокринологов по применению биосимиляров инсулина. Сахарный диабет. 2021; 24(1): 76 — 79.
[91] Ефремова Н.В., Болотская Л.Л., Атарщиков Д.С., и др. Применение аналогов инсулина человека у пациентов молодого возраста с сахарным диабетом 1-го типа: результаты наблюдательной программы RESULT по применению инсулина гларгин (Лантус) в комбинации с инсулином глулизин (Апидра) в базально-болюсном режиме. Терапевтический архив (архив до 2018 г). 2015; 87(10): 42 — 49. doi: 10.17116/terarkh2015871042-49
[92] Heller S, Bode B, Kozlovski P, et al. Meta-analysis of insulin aspart versus regular human insulin used in a basal-bolus regimen for the treatment of diabetes mellitus. J Diabetes. 2013; 5(4): 482 — 491. doi: 10.1111/1753-0407.12060
[93] Wojciechowski P, Niemczyk-Szechowska P, Olewinska E, et al. Clinical efficacy and safety of insulin aspart compared with regular human insulin in patients with type 1 and type 2 diabetes: a systematic review and meta-analysis. Pol Arch Med Wewn. 2015; 125(3): 141 — 151.
[94] Dawoud D, O’Mahony R, Wonderling D, et al. Basal Insulin Regimens for Adults with Type 1 Diabetes Mellitus: A Systematic Review and Network Meta-Analysis. Value Health. 2018; 21(2): 176 — 184. doi: 10.1016/j.jval.2017.04.024
[95] Szypowska A, Golicki D, Groele L, et al. Long-acting insulin analogue detemir compared with NPH insulin in type 1 diabetes: a systematic review and meta-analysis. Pol Arch Med Wewn. 2011; 121(7-8): 237 — 246.
[96] Einhorn D, Handelsman Y, Bode BW, et al. Patients achieving good glycemic control (HbA1c < 7%) experience a lower rate of hypoglycemia with insulin degludec than with insulin glargine: a meta-analysis of phase 3a trials. Endocr Pract. 2015; 21(8): 917 — 926. doi: 10.4158/EP14523.OR
[97] Dzygalo K, Golicki D, Kowalska A, et al. The beneficial effect of insulin degludec on nocturnal hypoglycaemia and insulin dose in type 1 diabetic patients: a systematic review and meta-analysis of randomised trials. Acta Diabetol. 2015; 52(2): 231 — 238. doi: 10.1007/s00592-014-0604-0
[98] Russell-Jones D, Gall M-A, Niemeyer M, et al. Insulin degludec results in lower rates of nocturnal hypoglycaemia and fasting plasma glucose vs. insulin glargine: A meta-analysis of seven clinical trials. Nutr Metab Cardiovasc Dis. 2015; 25(10): 898 — 905. doi: 10.1016/j.numecd.2015.06.005
[99] Laubner K, Molz K, Kerner W, et al. Daily insulin doses and injection frequencies of neutral protamine hagedorn (NPH) insulin, insulin detemir and insulin glargine in type 1 and type 2 diabetes: a multicenter analysis of 51 964 patients from the German/Austrian DPV-wiss database. Diabetes Metab Res Rev. 2014; 30(5): 395 — 404. doi: 10.1002/dmrr.2500
[100] Laranjeira FO, de Andrade KRC, Figueiredo ACMG, et al. Long-acting insulin analogues for type 1 diabetes: An overview of systematic reviews and meta-analysis of randomized controlled trials. PLoS One. 2018; 13(4): e0194801. doi: 10.1371/journal.pone.0194801
[101] Gough SCL. A review of human and analogue insulin trials. Diabetes Res Clin Pract. 2007; 77(1): 1 — 15. doi: 10.1016/j.diabres.2006.10.015
[102] Monami M, Marchionni N, Mannucci E. Long-acting insulin analogues vs. NPH human insulin in type 1 diabetes. A meta-analysis. Diabetes Obes Metab. 2009; 11(4): 372 — 378. doi: 10.1111/j.1463-1326.2008.00976.x
[103] Home PD, Bergenstal RM, Bolli GB, et al. New Insulin Glargine 300 Units/mL Versus Glargine 100 Units/mL in People With Type 1 Diabetes: A Randomized, Phase 3a, Open-Label Clinical Trial (EDITION 4). Diabetes Care. 2015; 38(12): 2217 — 2225. doi: 10.2337/dc15-0249
[104] Laurenzi A, Bolla AM, Panigoni G, et al. Effects of Carbohydrate Counting on Glucose Control and Quality of Life Over 24 Weeks in Adult Patients With Type 1 Diabetes on Continuous Subcutaneous Insulin Infusion: A randomized, prospective clinical trial (GIOCAR). Diabetes Care. 2011; 34(4): 823 — 827. doi: 10.2337/dc10-1490
[105] Samann A, Muhlhauser I, Bender R, et al. Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study. Diabetologia. 2005; 48(10): 1965 — 1970. doi: 10.1007/s00125-005-1905-1
[106] Bell KJ, Barclay AW, Petocz P, et al. Efficacy of carbohydrate counting in type 1 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2014; 2(2): 133 — 140. doi: 10.1016/S2213-8587(13)70144-X
[107] Elliott J, Lawton J, Rankin D, et al. The 5 x 1 DAFNE study protocol: a cluster randomised trial comparing a standard 5 day DAFNE course delivered over 1 week against DAFNE training delivered over 1 day a week for 5 consecutive weeks. BMC Endocr Disord. 2012; 12(1): 28. doi: 10.1186/1472-6823-12-28
[108] Haas L, Maryniuk M, Beck J, et al. National Standards for Diabetes Self-Management Education and Support. Diabetes Care. 2013; 36 (Supplement_1): S100 — S108. doi: 10.2337/dc13-S100
[109] Cooke D, Bond R, Lawton J, et al. Structured Type 1 Diabetes Education Delivered Within Routine Care: Impact on glycemic control and diabetes-specific quality of life. Diabetes Care. 2013; 36(2): 270 — 272. doi: 10.2337/dc12-0080
[110] Cochran J, Conn VS. Meta-analysis of Quality of Life Outcomes Following Diabetes Self-management Training. Diabetes Educ. 2008; 34(5): 815 — 823. doi: 10.1177/0145721708323640
[111] Foster G, Taylor SJC, Eldridge SE, et al. Self-management education programmes by lay leaders for people with chronic conditions. Cochrane database Syst Rev. 2007(4): CD005108. doi: 10.1002/14651858.CD005108.pub2
[112] Johnson TM, Murray MR, Huang Y. Associations Between Self-Management Education and Comprehensive Diabetes Clinical Care. Diabetes Spectr. 2010; 23(1): 41 — 46. doi: 10.2337/diaspect.23.1.41
[113] MacLeod J, Franz MJ, Handu D, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Nutrition Intervention Evidence Reviews and Recommendations. J Acad Nutr Diet. 2017; 117(10): 1637 — 1658. doi: 10.1016/j.jand.2017.03.023
[114] DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002; 325(7367): 746 — 746. doi: 10.1136/bmj.325.7367.746
[115] Delahanty LM, Nathan DM, Lachin JM, et al. Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial. Am J Clin Nutr. 2009; 89(2): 518 — 524. doi: 10.3945/ajcn.2008.26498
[116] Майоров А.Ю., Мельникова О.Г., Котешкова О.М., и др. Техника инъекций и инфузии при лечении сахарного диабета. Методическое руководство. Москва: ООО «АРТИНФО», 2018
[117] Frid AH, Kreugel G, Grassi G, et al. New Insulin Delivery Recommendations. Mayo Clin Proc. 2016; 91(9): 1231 — 1255. doi: 10.1016/j.mayocp.2016.06.010
[118] Kreugel G, Kees J, Jongbloed A, et al. The influence of needle length on glycemic control and patient preference in obese diabetic patients. Diabetes. 2009; 58A117.
[119] Schwartz S, Hassman D, Shelmet J, et al. A multicenter, open-label, randomized, two-period crossover trial comparing glycemic control, satisfaction, and preference achieved with a 31 gauge x 6 mm needle versus a 29 gauge x 12.7 mm needle in obese patients with diabetes mellitus. Clin Ther. 2004; 26(10): 1663 — 1678. doi: 10.1016/j.clinthera.2004.10.007
[120] Strauss K, Hannet I, McGonigle J, et al. Ultra-short (5 mm) insulin needles: Trial results and clinical recommendations. Pract Diabetes Int. 1999; 16(7): 218 — 222. doi: 10.1002/pdi.1960160711
[121] Kreugel G, Keers JC, Kerstens MN, et al. Randomized Trial on the Influence of the Length of Two Insulin Pen Needles on Glycemic Control and Patient Preference in Obese Patients with Diabetes. Diabetes Technol Ther. 2011; 13(7): 737 — 741. doi: 10.1089/dia.2011.0010
[122] McKay M, Compion G, Lytzen L. A Comparison of Insulin Injection Needles on Patients’ Perceptions of Pain, Handling, and Acceptability: A Randomized, Open-Label, Crossover Study in Subjects with Diabetes. Diabetes Technol Ther. 2009; 11(3): 195 — 201. doi: 10.1089/dia.2008.0054
[123] Birkebaek NH, Solvig J, Hansen B, et al. A 4-mm Needle Reduces the Risk of Intramuscular Injections Without Increasing Backflow to Skin Surface in Lean Diabetic Children and Adults. Diabetes Care. 2008; 31(9): e65. doi: 10.2337/dc08-0977
[124] Uzun S, Inanc N, Azal S. Determining optimal needle length for subcutaneous insulin injection. J Diab Nurs. 2001; 5(10): 83 — 87.
[125] Hirsch LJ, Gibney MA, Albanese J, et al. Comparative glycemic control, safety and patient ratings for a new 4 mm x 32G insulin pen needle in adults with diabetes. Curr Med Res Opin. 2010; 26(6): 1531 — 1541. doi: 10.1185/03007995.2010.482499
[126] Miwa T, Itoh R, Kobayashi T, et al. Comparison of the Effects of a New 32-Gaugex4-mm Pen Needle and a 32-Gaugex6-mm Pen Needle on Glycemic Control, Safety, and Patient Ratings in Japanese Adults with Diabetes. Diabetes Technol Ther. 2012; 14(12): 1084 — 1090. doi: 10.1089/dia.2012.0170
[127] Nagai Y, Ohshige T, Arai K, et al. Comparison Between Shorter Straight and Thinner Microtapered Insulin Injection Needles. Diabetes Technol Ther. 2013; 15(7): 550 — 555. doi: 10.1089/dia.2012.0334
[128] Bergenstal RM, Strock ES, Peremislov D, et al. Safety and Efficacy of Insulin Therapy Delivered via a 4mm Pen Needle in Obese Patients With Diabetes. Mayo Clin Proc. 2015; 90(3): 329 — 338. doi: 10.1016/j.mayocp.2014.12.014
[129] Hirsch L, Gibney M, Berube J, et al. Impact of a Modified Needle Tip Geometry on Penetration Force as Well as Acceptability, Preference, and Perceived Pain in Subjects with Diabetes. J Diabetes Sci Technol. 2012; 6(2): 328 — 335. doi: 10.1177/193229681200600216
[130] Caffrey R. Are All Syringes Created Equal?: How to choose and use today’s insulin syringes. Am J Nurs. 2003; 103(6): 46 — 49.
[131] Braak EWT, Woodworth JR, Bianchi R, et al. Injection Site Effects on the Pharmacokinetics and Glucodynamics of Insulin Lispro and Regular Insulin. Diabetes Care. 1996; 19(12): 1437 — 1440. doi: 10.2337/diacare.19.12.1437
[132] Lippert WC, Wall EJ. Optimal Intramuscular Needle-Penetration Depth. Pediatrics. 2008; 122(3): e556 — e563. doi: 10.1542/peds.2008-0374
[133] Sonoki K, Yoshinari M, Iwase M, et al. Regurgitation of Blood into Insulin Cartridges in the Pen-like Injectors. Diabetes Care. 2001; 24(3): 603 — 604. doi: 10.2337/diacare.24.3.603
[134] Shikata T, Karasawa T, Abe K, et al. Hepatitis B e Antigen and Infectivity of Hepatitis B Virus. J Infect Dis. 1977; 136(4): 571 — 576. doi: 10.1093/infdis/136.4.571
[135] Scioli D, Pizzella T, Vollaro L, et al. The action of VIRKON No Foam on the hepatitis B virus. Eur J Epidemiol. 1997; 13(8): 879 — 883. doi: 10.1023/A: 1007399926095
[136] Herdman ML, Larck C, Schliesser SH, et al. Biological contamination of insulin pens in a hospital setting. Am J Heal Pharm. 2013; 70(14): 1244 — 1248. doi: 10.2146/ajhp120728
[137] Schuler G, Pelz K, Kerp L. Is the reuse of needles for insulin injection systems associated with a higher risk of cutaneous complications? Diabetes Res Clin Pract. 1992; 16(3): 209 — 212.
[138] Johansson U-B, Amsberg S, Hannerz L, et al. Impaired Absorption of Insulin Aspart From Lipohypertrophic Injection Sites. Diabetes Care. 2005; 28(8): 2025 — 2027. doi: 10.2337/diacare.28.8.2025
[139] Chowdhury TA, Escudier V. Poor glycaemic control caused by insulin induced lipohypertrophy. BMJ. 2003; 327(7411): 383 — 384. doi: 10.1136/bmj.327.7411.383
[140] Chantelau E, Lee DM, Hemmann DM, et al. What makes insulin injections painful? BMJ. 1991; 303(6793): 26 — 27. doi: 10.1136/bmj.303.6793.26
[141] Colberg SR, Sigal RJ, Yardley JE, et al. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016; 39(11): 2065 — 2079. doi: 10.2337/dc16-1728
[142] U.S. Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. 2008
[143] Pickup JC. The Evidence Base for Diabetes Technology: Appropriate and Inappropriate Meta-Analysis. J Diabetes Sci Technol. 2013; 7(6): 1567 — 1574. doi: 10.1177/193229681300700617
[144] Lin MH, Connor CG, Ruedy KJ, et al. Race, Socioeconomic Status, and Treatment Center Are Associated with Insulin Pump Therapy in Youth in the First Year Following Diagnosis of Type 1 Diabetes. Diabetes Technol Ther. 2013; 15(11): 929 — 934. doi: 10.1089/dia.2013.0132
[145] Doyle EA, Weinzimer SA, Steffen AT, et al. A randomized, prospective trial comparing the efficacy of continuous subcutaneous insulin infusion with multiple daily injections using insulin glargine. Diabetes Care. 2004; 27(7): 1554 — 1558. doi: 10.2337/diacare.27.7.1554
[146] Jeitler K, Horvath K, Berghold A, et al. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetologia. 2008; 51(6): 941 — 951. doi: 10.1007/s00125-008-0974-3
[147] Karges B, Schwandt A, Heidtmann B, et al. Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes. JAMA. 2017; 318(14): 1358 — 1366. doi: 10.1001/jama.2017.13994
[148] Pickup JC, Sutton AJ. Severe hypoglycaemia and glycaemic control in Type 1 diabetes: meta-analysis of multiple daily insulin injections compared with continuous subcutaneous insulin infusion. Diabet Med. 2008; 25(7): 765 — 774. doi: 10.1111/j.1464-5491.2008.02486.x
[149] Misso ML, Egberts KJ, Page M, et al. Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus. Cochrane database Syst Rev. 2010(1): CD005103. doi: 10.1002/14651858.CD005103.pub2
[150] Saudek CD, Duckworth WC, Giobbie-Hurder A, et al. Implantable insulin pump vs multiple-dose insulin for non-insulin-dependent diabetes mellitus: a randomized clinical trial. Department of Veterans Affairs Implantable Insulin Pump Study Group. JAMA. 1996; 276(16): 1322 — 1327.
[151] Weissberg-Benchell J, Antisdel-Lomaglio J, Seshadri R. Insulin Pump Therapy: A meta-analysis. Diabetes Care. 2003; 26(4): 1079 — 1087. doi: 10.2337/diacare.26.4.1079
[152] Quiros C, Jansa M, Vinals C, et al. Experiences and real life management of insulin pump therapy in adults with type 1 diabetes. Endocrinol diabetes y Nutr. 2019; 66(2): 117 — 123. doi: 10.1016/j.endinu.2018.05.017
[153] Peters AL, Ahmann AJ, Battelino T, et al. Diabetes Technology-Continuous Subcutaneous Insulin Infusion Therapy and Continuous Glucose Monitoring in Adults: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016; 101(11): 3922 — 3937. doi: 10.1210/jc.2016-2534
[154] Meade LT, Rushton WE. Optimizing insulin pump therapy: a quality improvement project. Diabetes Educ. 2013; 39(6): 841 — 847. doi: 10.1177/0145721713504628
[155] American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S125-S143. doi: 10.2337/dc22-S009
[156] Gruessner AC, Sutherland DER. Pancreas transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Clin Transpl. 200845 — 56.
[157] Scalea JR, Butler CC, Munivenkatappa RB, et al. Pancreas Transplant Alone as an Independent Risk Factor for the Development of Renal Failure: A Retrospective Study. Transplantation. 2008; 86(12): 1789 — 1794. doi: 10.1097/TP.0b013e3181913fbf
[158] Всемирная Организация Здравоохранения. Терапевтическое обучение больных. Программы непрерывного обучения для работников здравоохранения в области профилактики хронических заболеваний. Отчет рабочей группы ВОЗ. Москва, 1998
[159] Deakin T, Whitham C. Structured patient education: the X-PERT Programme. Br J Community Nurs. 2009; 14(9): 398 — 404. doi: 10.12968/bjcn.2009.14.9.43916
[160] Старостина Е.Г., Анциферов М.Б., Галстян Г.Р., и др. Эффективность программы интенсивного лечения и обучения больных сахарным диабетом 1 типа. Проблемы эндокринологии. 1994; 40(3): 12 — 15. doi: 10.14341/probl12004
[161] Майоров А.Ю., Галстян Г.Р., Двойнишникова О.М., и др. Терапевтическое обучение в России: результаты 15-летнего наблюдения больных сахарным диабетом 1 типа. Сахарный диабет. 2005; 8(3): 52 — 58. doi: 10.14341/2072-0351-5579
[162] American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S60 — S82. doi: 10.2337/dc22-S005
[163] Yeoh E, Choudhary P, Nwokolo M, et al. Interventions That Restore Awareness of Hypoglycemia in Adults With Type 1 Diabetes: A Systematic Review and Meta-analysis. Diabetes Care. 2015; 38(8): 1592 — 1609. doi: 10.2337/dc15-0102
[164] Ellis SE, Speroff T, Dittus RS, et al. Diabetes patient education: a meta-analysis and meta-regression. Patient Educ Couns. 2004; 52(1): 97 — 105. doi: 10.1016/S0738-3991(03) 00016-8
[165] Heller SR. Structured education in type 1 diabetes. Br J Diabetes Vasc Dis. 2009; 9(6): 269 — 272. doi: 10.1177/1474651409351646
[166] Clark M. Diabetes self-management education: A review of published studies. Prim Care Diabetes. 2008; 2(3): 113 — 120. doi: 10.1016/j.pcd.2008.04.004
[167] Oliver L, Thompson G. The DAFNE Collaborative. Experiences of developing a nationally delivered evidence-based, quality-assured programme for people with type 1 diabetes. Pract Diabetes Int. 2009; 26(9): 371 — 377. doi: 10.1002/pdi.1424
[168] Дедов И.И., Суркова Е.В., Майоров А.Ю., и др. Программа подготовки специалистов в области обучения больных сахарным диабетом. Сахарный диабет. 2003; 6(1): 44 — 47. doi: 10.14341/2072-0351-6045
[169] Дедов И.И., Суркова Е.В., Майоров А.Ю., и др. Терапевтическое обучение больных сахарным диабетом. Москва: Реафарм, 2004
[170] Суркова Е.В., Майоров А.Ю., Галстян Г.Р., и др. Обучение больных сахарным диабетом: Руководство для эндокринологов. Москва: Медицина для Вас, 2007
[171] Sadosky A, Schaefer C, Mann R, et al. Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: results from a retrospective chart review and cross-sectional survey. Diabetes Metab Syndr Obes. 2013; 679 — 92. doi: 10.2147/DMSO.S37415
[172] Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015; 14(2): 162 — 173. doi: 10.1016/S1474-4422(14) 70251-0
[173] Tesfaye S, Wilhelm S, Lledo A, et al. Duloxetine and pregabalin: High-dose monotherapy or their combination? The «COMBO-DN study» — a multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain. 2013; 154(12): 2616 — 2625. doi: 10.1016/j.pain.2013.05.043
[174] Waldfogel JM, Nesbit SA, Dy SM, et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life. Neurology. 2017; 88(20): 1958 — 1967. doi: 10.1212/WNL.0000000000003882
[175] Wiffen PJ, Derry S, Bell RF, et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017; 6CD007938. doi: 10.1002/14651858.CD007938.pub4
[176] Wernicke JF, Pritchett YL, D’Souza DN, et al. A randomized controlled trial of duloxetine in diabetic peripheral neuropathic pain. Neurology. 2006; 67(8): 1411 — 1420. doi: 10.1212/01.wnl.0000240225.04000.1a
[177] Schwartz S, Etropolski M, Shapiro DY, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. Curr Med Res Opin. 2011; 27(1): 151 — 162. doi: 10.1185/03007995.2010.537589
[178] Seaquist ER, Anderson J, Childs B, et al. Hypoglycemia and Diabetes: A Report of a Workgroup of the American Diabetes Association and The Endocrine Society. Diabetes Care. 2013; 36(5): 1384 — 1395. doi: 10.2337/dc12-2480
[179] Cryer PE. Diverse Causes of Hypoglycemia-Associated Autonomic Failure in Diabetes. N Engl J Med. 2004; 350(22): 2272 — 2279. doi: 10.1056/NEJMra031354
[180] Cryer PE, Preceded by: Cryer PE. Hypoglycemia in diabetes: pathophysiology, prevalence, and prevention. American Diabetes Association, https: //www.worldcat.org/title/hypoglycemia-in-diabetes-pathophysiology-prevalence-and-prevention/oclc/953848679 (2016, accessed 28 July 2019)
[181] Slama G, Traynard PY, Desplanque N, et al. The search for an optimized treatment of hypoglycemia. Carbohydrates in tablets, solutin, or gel for the correction of insulin reactions. Arch Intern Med. 1990; 150(3): 589 — 593.
[182] Agiostratidou G, Anhalt H, Ball D, et al. Standardizing Clinically Meaningful Outcome Measures Beyond HbA1c for Type 1 Diabetes: A Consensus Report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endo. Diabetes Care. 2017; 40(12): 1622 — 1630. doi: 10.2337/dc17-1624
[183] Karter AJ, Moffet HH, Liu JY, et al. Surveillance of Hypoglycemia-Limitations of Emergency Department and Hospital Utilization Data. JAMA Intern Med. 2018; 178(7): 987 — 988. doi: 10.1001/jamainternmed.2018.1014
[184] Cox DJ, Kovatchev B, Koev D, et al. Hypoglycemia anticipation, awareness and treatment training (HAATT) reduces occurrence of severe hypoglycemia among adults with type 1 diabetes mellitus. Int J Behav Med. 2004; 11(4): 212 — 218. doi: 10.1207/s15327558ijbm1104_4
[185] Eli Lilly Canada Inc. Glucagon (rDNA Origin) Product Monograph. Toronto, 2012
[186] Nordisk N. GlucaGen(R) (glucagon) Product monograph. Bagsvaerd, 2002
[187] Boido A, Ceriani V, Pontiroli AE. Glucagon for hypoglycemic episodes in insulin-treated diabetic patients: a systematic review and meta-analysis with a comparison of glucagon with dextrose and of different glucagon formulations. Acta Diabetol. 2015; 52(2): 405 — 412. doi: 10.1007/s00592-014-0665-0
[188] Стандарт санаторно-курортной помощи больным сахарным диабетом. Проблемы стандартизации в здравоохранении. 2005(1): 106 — 107.
[189] Агасиев А.Р. Потребность больных сахарным диабетом в дополнительных лечебно-диагностических услугах при санаторно-курортном лечении. Современная медицина: актуальные вопросы. 2015(42-43): 93 — 97.
[190] Приказ Минздрава РФ от 28.09.2020 N 1029Н «Об утверждении перечней медицинских показаний и противопоказаний для санаторно-курортного лечения»
[191] Martin CL, Albers JW, Pop-Busui R. Neuropathy and Related Findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care. 2014; 37(1): 31 — 38. doi: 10.2337/dc13-2114
[192] Pop-Busui R, Boulton AJM, Feldman EL, et al. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care. 2017; 40(1): 136 — 154. doi: 10.2337/dc16-2042
[193] Eberle C, Stichling S. Clinical Improvements by Telemedicine Interventions Managing Type 1 and Type 2 Diabetes: Systematic Meta-review. J Med Internet Res. 2021; 23(2): e23244. doi: 10.2196/23244
[194] Hu Y, Wen X, Wang F, et al. Effect of telemedicine intervention on hypoglycaemia in diabetes patients: A systematic review and meta-analysis of randomised controlled trials. J Telemed Telecare. 2019; 25(7): 402 — 413. doi: 10.1177/1357633X18776823
[195] Tchero H, Kangambega P, Briatte C, et al. Clinical Effectiveness of Telemedicine in Diabetes Mellitus: A Meta-Analysis of 42 Randomized Controlled Trials. Telemed e-Health. 2019; 25(7): 569 — 583. doi: 10.1089/tmj.2018.0128
[196] Lee SWH, Ooi L, Lai YK. Telemedicine for the Management of Glycemic Control and Clinical Outcomes of Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Front Pharmacol. 2017; 8330. doi: 10.3389/fphar.2017.00330
[197] Wu C, Wu Z, Yang L, et al. Evaluation of the clinical outcomes of telehealth for managing diabetes. Medicine (Baltimore). 2018; 97(43): e12962. doi: 10.1097/MD.0000000000012962
[198] Chase HP, Pearson JA, Wightman C, et al. Modem Transmission of Glucose Values Reduces the Costs and Need for Clinic Visits. Diabetes Care. 2003; 26(5): 1475 — 1479. doi: 10.2337/diacare.26.5.1475
[199] de Boer IH, Caramori ML, Chan JCN, et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020; 98(4): S1 — S115. doi: 10.1016/j.kint.2020.06.019
[200] Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012; 380(9854): 1662 — 1673. doi: 10.1016/S0140-6736(12)61350-6
[201] American Diabetes Association. 11. Chronic Kidney Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022; 45 (Supplement_1): S175 — S184. doi: 10.2337/dc22-S011
[202] Smart NA, Dieberg G, Ladhani M, et al. Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease. Cochrane database Syst Rev. 2014(6): CD007333. doi: 10.1002/14651858.CD007333.pub2
[203] Molitch ME, Steffes M, Sun W, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010; 33(7): 1536 — 1543. doi: 10.2337/dc09-1098
[204] Kasiske BL, Lakatua JD, Ma JZ, et al. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998; 31(6): 954-961.
[205] Murray DP, Young L, Waller J, et al. Is Dietary Protein Intake Predictive of 1-Year Mortality in Dialysis Patients? Am J Med Sci. 2018; 356(3): 234 — 243. doi: 10.1016/j.amjms.2018.06.010
[206] He FJ, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane database Syst Rev. 2004(3): CD004937. doi: 10.1002/14651858.CD004937
[207] Mills KT, Chen J, Yang W, et al. Sodium Excretion and the Risk of Cardiovascular Disease in Patients With Chronic Kidney Disease. JAMA. 2016; 315(20): 2200 — 2210. doi: 10.1001/jama.2016.4447
[208] Nilsson E, Gasparini A, Arnlov J, et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017; 245277 — 284. doi: 10.1016/j.ijcard.2017.07.035
[209] Waden J, Tikkanen HK, Forsblom C, et al. Leisure-time physical activity and development and progression of diabetic nephropathy in type 1 diabetes: the FinnDiane Study. Diabetologia. 2015; 58(5): 929 — 936. doi: 10.1007/s00125-015-3499-6
[210] Tikkanen-Dolenc H, Waden J, Forsblom C, et al. Physical Activity Reduces Risk of Premature Mortality in Patients With Type 1 Diabetes With and Without Kidney Disease. Diabetes Care. 2017; 40(12): 1727 — 1732. doi: 10.2337/dc17-0615
[211] DCCT/EDIC research group. Effect of intensive diabetes treatment on albuminuria in type 1 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications study. lancet Diabetes Endocrinol. 2014; 2(10): 793 — 800. doi: 10.1016/S2213-8587(14) 70155-X
[212] DCCT/EDIC Research Group, de Boer IH, Sun W, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011; 365(25): 2366 — 2376. doi: 10.1056/NEJMoa1111732
[213] Parving HH, Andersen AR, Smidt UM, et al. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983; 1(8335): 1175 — 1179. doi: 10.1016/s0140-6736(83) 92462-5
[214] The EUCLID study group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet (London, England). 1997; 349(9068): 1787 — 1792.
[215] Bandak G, Sang Y, Gasparini A, et al. Hyperkalemia After Initiating Renin-Angiotensin System Blockade: The Stockholm Creatinine Measurements (SCREAM) Project. J Am Heart Assoc. 2017; 6(7): pii: e005428. doi: 10.1161/JAHA.116.005428
[216] Sumida K, Molnar MZ, Potukuchi PK, et al. Changes in Albuminuria and Subsequent Risk of Incident Kidney Disease. Clin J Am Soc Nephrol. 2017; 12(12): 1941 — 1949. doi: 10.2215/CJN.02720317
[217] Mauer M, Zinman B, Gardiner R, et al. Renal and Retinal Effects of Enalapril and Losartan in Type 1 Diabetes. N Engl J Med. 2009; 361(1): 40 — 51. doi: 10.1056/NEJMoa0808400
[218] Аветисов С.Э., Егоров Е.А., Мошетова Л.К., и др. Офтальмология: национальное руководство. 2-ое изд. Москва: ГЭОТАР-Медиа, 2018
[219] Giusti C GP. Advances in biochemical mechanisms of diabetic retinopathy. Eur Rev Med Pharmacol Sci. 2007; 11(3): 115 — 163.
[220] Дедов И.И., Шестакова М.В., Викулова О.К., и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021; 24(3): 204 — 221. doi: 10.14341/DM12759
[221] Porta M, Kohner E. Screening for Diabetic Retinopathy in Europe. Diabet Med. 1991; 8(3): 197 — 198. doi: 10.1111/j.1464-5491.1991.tb01571.x
[222] Early Treatment Diabetic Retinopathy Study Research Group. Early Photocoagulation for Diabetic Retinopathy. Ophthalmology. 1991; 98(5): 76 — 785. doi: 10.1016/S0161-6420(13) 38011-7
[223] Neroev VV, Astakhov YS, Korotkih SA, et al. Protocol of intravitreal drug delivery. Consensus of the Expert Counsil of Retina and Optic Nerve Diseases of the All-Russian Public Organasation «Association of Ophthalmologists». Vestn oftal’mologii. 2020; 136(6): 251. doi: 10.17116/oftalma2020136062251
[224] International Diabetes Federation and The Fred Hollows Foundation. Diabetes eye health: A guide for health care professionals. Brussels: International Diabetes Federation, www.idf.org/eyecare (2015)
[225] American Academy of Ophthalmology. Comprehensive Adult Medical Eye Evaluation Preferred Practice Pattern . 2020
[226] Public Health England. NHS diabetic eye screening (DES) programme, https: //www.gov.uk/topic/population-screening-programmes/diabetic-eye
[227] NHS Scotland National Diabetes Retinopathy Screening, https://www.ndrs.scot.nhs.uk/Links/index.htm/
[228] Diabetes Control and Complication Trial Research Group. The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes. 1995; 44(8): 968 — 983.
[229] World Health Organization. Prevention of blindness from diabetes mellitus. Report of a WHO consultation. Geneva, 2006
[230] Shi R, Zhao L, Wang F, et al. Effects of lipid-lowering agents on diabetic retinopathy: a Meta-analysis and systematic review. Int J Ophthalmol. 2018; 11(2): 287 — 295. doi: 10.18240/ijo.2018.02.18
[231] Chaturvedi N, Sjolie A-K, Stephenson JM, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. Lancet. 1998; 351(9095): 28 — 31. doi: 10.1016/S0140-6736(97)06209-0
[232] Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the Management of Diabetic Macular Edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica. 2017; 237(4): 185 — 222. doi: 10.1159/000458539
[233] Mayer-Davis EJ, Bell RA, Reboussin BA, et al. Antioxidant nutrient intake and diabetic retinopathy. Ophthalmology. 1998; 105(12): 2264 — 2270. doi: 10.1016/S0161-6420(98) 91227-1
[234] Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic Retinopathy Preferred Practice Pattern(R). Ophthalmology. 2020; 127(1): P66 — P145. doi: 10.1016/j.ophtha.2019.09.025
[235] Бровкина А.Ф., Астахов Ю.С. (ред). Руководство по клинической офтальмологии. Москва: Медицинское информационное агентство, 2014
[236] Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol (Chicago, Ill 1960). 1985; 103(12): 1796 — 1806.
[237] Brown DM, Schmidt-Erfurth U, Do D V., et al. Intravitreal Aflibercept for Diabetic Macular Edema: 100-Week Results From the VISTA and VIVID Studies. Ophthalmology. 2015; 122(10): 2044 — 2052. doi: 10.1016/j.ophtha.2015.06.017
[238] Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. Ophthalmology. 1981; 88(7): 583 — 600.
[239] Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane database Syst Rev. 2014(11): CD011234. doi: 10.1002/14651858.CD011234.pub2
[240] Diabetic Retinopathy Study Research Group. Indications for photocoagulation treatment of diabetic retinopathy: Diabetic Retinopathy Study Report no. 14. Int Ophthalmol Clin. 1987; 27(4): 239 — 253.
[241] Moutray T, Evans JR, Lois N, et al. Different lasers and techniques for proliferative diabetic retinopathy. Cochrane database Syst Rev. 2018; 3CD012314. doi: 10.1002/14651858.CD012314.pub2
[242] Gross JG, Glassman AR, Jampol LM, et al. Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy. JAMA. 2015; 314(20): 2137 — 2146. doi: 10.1001/jama.2015.15217
[243] Diadetes Control and Complication Trial (DCCT) Research Group. Effect of intensive diabetes treatment on nerve conduction in the diabetes control and complications trial. Ann Neurol. 1995; 38(6): 869 — 880. doi: 10.1002/ana.410380607
[244] Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007; 370(9600): 1687 — 1697. doi: 10.1016/S0140-6736(07)61607-9
[245] Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for Diabetic Macular Edema. Arch Ophthalmol. 1985; 103(12): 1796 — 1806. doi: 10.1001/archopht.1985.01050120030015
[246] Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for Diabetic Macular Edema. Ophthalmology. 2012; 119(4): 789 — 801. doi: 10.1016/j.ophtha.2011.12.039
[247] Do D V, Nguyen QD, Boyer D, et al. One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology. 2012; 119(8): 1658 — 1665. doi: 10.1016/j.ophtha.2012.02.010
[248] Boyer DS, Yoon YH, Belfort R, et al. Three-Year, Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Diabetic Macular Edema. Ophthalmology. 2014; 121(10): 1904 — 1914. doi: 10.1016/j.ophtha.2014.04.024
[249] Elman MJ, Ayala A, Bressler NM, et al. Intravitreal Ranibizumab for Diabetic Macular Edema with Prompt versus Deferred Laser Treatment: 5-Year Randomized Trial Results. Ophthalmology. 2015; 122(2): 375 — 381. doi: 10.1016/j.ophtha.2014.08.047
[250] Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Randomized Clinical Trial. Ophthalmology. 2016; 123(6): 1351 — 1359. doi: 10.1016/j.ophtha.2016.02.022
[251] Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015; 372(13): 1193 — 1203. doi: 10.1056/NEJMoa1414264
………
Полную версию «Клинические рекомендации сахарный диабет 1 типа у взрослых» на 2024 год, утверждённую и одобренную Министерством здравоохранения Российской Федерации, абсолютно бесплатно можно здесь СКАЧАТЬ или на официальном сайте Министерства здравоохранения Российской Федерации.

Если Вам понравилась и была полезна информация, то делитесь ей со своими друзьями и сохраняйте в своих любимых социальных сетях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *